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Abstract-The rate of evaporation of liquid oxygen depends upon the density distribution of gaseous 
oxygen in the vicinity of the phase interface. The paper represents theoretical and experimental study of 
the problem. An analytical self-similar solution is obtained for the system of unsteady one-dimensional 
equations describing the flow of heat conducting mixture of mutually diffusing gases above the thermally 
destructing surface. The rate of evaporation, concentration and temperature profiles for various times are 

determined theoretically and compared with the experimental data. 

1. INTRODUCTION 

ONE OF the current central problems of interphase heat 
and mass transfer is evaporation of liquid contacting a 
multi-component gas mixture. Evaporation of a con- 
densed gas from a free surface into the atmosphere is 
not only of theoretical interest but also of practical 
importance. 

For determining the mass velocity of liquid evap- 
oration, it is necessary to study the unsteady-state 
processes of the formation of a ‘condensed component 
vapours-air’ mixture with account for the coupled 
heat transfer and diffusion processes in the gaseous 
and condensed phases, and also for the conservation 
laws and evaporation conditions on the moving phase 
interface. The solution of this problem in a rigorous 
formulation presents great difficulties. This explains 
the upswing of interest in the development of approxi- 
mate techniques based on simplified models of con- 
densed gas evaporation into the atmosphere which 
rather accurately describe some specific cases of the 
process and substantially shorten the amount of com- 
putation. It should be noted that the simplest one- 
dimensional stationary statement of the problem does 
not have a solution. Invoking a number of additional 
assumptions, some of the authors have managed to 
obtain the solution of the problem for a two-dimen- 
sional stationary case [l] and for a one-dimensional 
unstationary case [2-81. Their common weakness is 
the hypothesized constant density of the mixture of 
gases. 

A characteristic feature of the process of condensed 
gas evaporation is the existence of large temperature 
and concentration gradients of the evaporating com- 
ponent in the gas. With the pressure being constant, 
this means that the density of the mixture of gases p 
is a function of temperature T and of the evaporat- 
ing component concentration Y: p = p( Y, T). The 
assumption that p = const. only qualitatively con- 
tradicts the physics of the phenomenon for vapours 

with a very small molecular weight (hydrogen, 
helium). 

The objective of this study was to develop a method 
for calculating unsteady-state process of condensed 
gas evaporation into the atmosphere taking account 
of the change in the density over the phase interface. 

2. STATEMENT OF THE PROBLEM 

The practically important dimensions of the dis- 
placement regions and the characteristic times of the 
progress of processes in evaporation of large volumes 
of condensed gases into the atmosphere are such that 
the time and space dependence of pressure can be 
neglected. The boundary conditions in the gas may be 
transferred to infinity. To be explicit, it will be assumed 
that the mixture of gases is two-component. The effect 
of external body forces is neglected. 

A system of coordinates will be considered in which 
the vertical axis 0~ is connected with the phase inter- 
face (y = 0). The semi-space y > 0 at the initial time 
t = 0 is occupied by air whereas the semi-space y < 0 
is occupied by a condensed gas. 

The equations of mass, mixture energy, and evap- 
orating component mass conservation, augmented 
with the equation of state, are of the form 

ap apv 
x+-=0, 

aY 

spy apvy 

at+ay= ( > pLE ay ’ 

cp(!3g+F?g)=~(g), 

p=pRT(;+!$). (1) 

Equations (1) which describe the distribution of 
the gas phase parameters, are being solved together 
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NOMENCLATURE 

(‘P specific heat at constant pressure 
D coefficient of binary diffusion 

erf s probability integral, 
(2/J7c)s’, exp ( -.s’/2) ds 

f self-similar velocity function 

9 dimensionless temperature of liquid 

h, specific heat of phase 
LC Lewis number, i/(pc,D) 

m, molar mass of the ith component 
m mass flux through the phase interface 

P pressure 
R universal gas constant 
SC Schmidt number, p/pD 
T temperature 
t time 
2’ velocity 
Y mass concentration 

I spatial coordinate 

z, s new dependent variables. 

Greek symbols 
6 ratio of initial gas and liquid 

densities 

II density function 
1 thermal conductivity 

P viscosity 

5 self-similar variable 

P density 

cp concentration function. 

Subscripts 
H liquid initial parameters 
i= 1 evaporating component 
1 current values of liquid phase parameters 
0 gas initial parameters 
W gas parameters near a phase interface. 

with the equation of energy in a condensed gas. In the 
chosen coordinate system the latter equation has the 
form 

where v and p are the velocity and pressure of the 
mixture of gases; p, D and 1 are the coefficients of 

viscosity, diffusion and heat conduction, cP is the spec- 
ific heat, R the universal gas constant, 111, and m, the 
molecular masses of components, I the index of the 

condensed gas parameters. 
The initial and boundary conditions of equations 

(1) and (2) are as follows : 

t=O y>O T= T,,, Y= Y,. 

r=O y<O T,=T, 

y++m Y= Y,, T= To 

y--cc T,=T,. (3) 

The boundary conditions on the phase interface 
(J = 0) follow from the mass conservation equation 
for the mass fluxes, ith component, energy con- 

servation equation and from the condition of equi- 
librium evaporation. In the chosen coordinate system 

they have the form 

rizy,, = tizY,-(pD)w 

Tw = UP,,) (4) 

where h, is the latent heat of evaporation, plW is the 
partial pressure of the evaporating component, w is 
the subscript relating to the phase interface par- 
ameters. 

3. SELF-SIMILAR STATEMENT OF THE 

PROBLEM 

The further discussion will be restricted to the case 

in which the condition pp = const. is fulfilled. For a 
perfect gas this condition means proportionality of 

the viscosity coefficient to temperature : p - T. For a 
mixture of perfect gases such an assumption is admis- 
sible if p and p are weak functions of the mixture 
composition, i.e. the molecular masses and other 
characteristic physical-chemical properties of the 
evaporating component and air are almost similar. 
This takes place in such practically important cases as 
evaporation of a liquified oxygen or nitrogen. In this 
case, when the Schmidt (SC = p/pD) and Lewis 
(Le = i/pDc,) numbers are constant, the set of equa- 
tions (1) and (2) with initial and boundary conditions 
(3) admits a self-similar solution. The independent 
variable 

and dependent variables 

cp(O = ;> v(t) = p”, > ,/UM 
P" = d(S)---; 

w L/(f) 

$(5) = ;-g ; g(5) = 2ILITK 
Tw-TH 

(6) 
w 0 
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are introduced where 0 is the subscript referring to the 
gas parameters at infinity. 

The introduction of self-similar variables trans- 
forms the set of equations (1) and (2) with initial 
and boundary conditions (3) into the following set of 
equations 

-2$(5X +s’c0 = 0 (7) 

(9) 

Le, s”(5) +s’(S)(25 - Sf(O)) = 0 (10) 

(11) 

The boundary conditions of the system in dimen- 
sionless parameters have the form 

5-++Oc, +, g=o (12) 

<-+-co, g=o. (13) 

At the phase interface the dimensionless variables take 
on the values 

5=0, fp=l, #//=I, g=l, 

f=f(O), 4 = V(O) = ;. (14) 

The set of equations (7)-(11) subject to boundary 
conditions (12)-(14) is closed with respect to the 

unknown functions (~(0, $(5), g(5), f(T), and ~(5). 
At the same time, boundary conditions (12) and (14) 
and also formulae (6). which connect dimensionless 
and dimensional variables, contain the unknown 
values of the functions on the phase interface. To 
determine these unknown values of Y,, T,, f(O), and 
v(O), use will be made of relationships on the phase 
interface (4) and of the state equation which, with 
account for the fact that equations (5) and (6) have 
become nondimensional, assume on the form 

c (ThL T,) f (0) = Leg - $j * g+(O) 
P w w 0 

f(0) y = ta’mto) 
‘W 

where A,, T, are the constants of the equilibrium 
evaporation curve. 

Note that besides the unknown values Y,, T,,,, f(O) 
and q(O), equation (15) also involves the boundary 
values of the derived functions p’(O), $‘(O) and g’(0) 
which must be dete~ined from the set of equations 
(7)--(I 1). Thus, the set of equations {7)-(11) with 
boundary conditions (12)-(14) should be solved 
together with system (15). 

4. SOLUTION OF EQUATIONS 

For salving this problem, equation (7) will be 
rewritten as 

cf- 2&)’ = - 2q. 

Taking into account the equality 

and equation (16), transform equation (8) as 

cp’ C-J _ rp’tf--25~w-w?>’ 
rl -2r] . 

With a further replacement of unknowns 

equation ( 17) yields the following equation 

the integration of which gives 

z = c, e-.s’!4. 

The inverse replacement of z = cp’/n results in 

so/ = c,rl e--‘,‘4. 

Since it follows from equation (16) that 

4 = _ (f-2&) 
2 

or, with equation (18) taken into account, that 

(16) 

(17) 

(18) 

(19) 

(20) 

then, substituting the latter equation into equation 
(20) gives 

4(l) = -$c, exp s’(l) ( > - 4 s’(T). (21) 

The integration of equation (21) and determination 
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of the integration constants from conditions (12) and 
(I 4) yields 

L+erf(~)+~[erf@)-erf(q)l 

cp(U = - 

l+erf f0 
( 1 2 

(22) 

In this case the expression for q’(O) required for solv- 

ing the set of equations (15) on the phase interphase 
has the form : 

$(O)=q(O)exp(- (/_+J) 

l- Y”/YW 
x -= 

i , +erf m ( ! 
(23) 

2 

Proceeding in a completely analogous way with equa- 

tion (9) we obtain 

1 +erf Z- 
( > 2JW J1(<) = ~~.~_~, 

]+erf _f(o,_ 
( > 

(24) 

2 J(W 

f”(0) 
f(O) = -q(O) exp - __ 

( > 4 Le 

Integration of equation (IO) gives 

(26) 

Having integrated equation (26) with account for 
boundary conditions (13) and (14), we obtain the 
solution of equation (10) : 

c?(l) = 
1 -erf ~~j 

( > e/ 

(27) 

in this case, the expression for g’(0) has the form 

g’(o) = J&j 1-,,r I;j/(O) ( 1 2J (Leo 

xexp(-e). (28) 

After the substitution of equations (22) and (24) for 
(p(t) and $(l) into equation (1 l), the latter takes on 
the form 

~(5) = G(s) (29) 

where 

G(S) = p 
POR 

r 

I+erf(i)+?(erf(i$) 

X 

According to equations (16), (18) and (29), 

ds 
= -2G(s). 

dE 

-erf i 

4 yW-_-----_ 0) 
-+B 

Thus, the problem has been reduced to the solution of 
an ordinary differential equation (30) with boundary 

condition s(0) =f(O). 
The value of f(0) and also of q(O), Y, and T, can 

be found by solving the set of equations (15) with 
account for the obtained expressions (23), (25) and 
(28) for q’(O), t,V(O) and g’(0). Substituting the result- 
ing numerical solution of s(4) from equation (30) into 
equations (22), (24), (27) and (29) yields the solutions 

for the functions (p(l), $(c$ g(t) and v(t). Knowing 
s(t) and q(& it is possible to determine f(r) from 
equation (18). 

The transition from the found self-similar functions 
to physical variables is prescribed by the following 

relations 

P = ~,rl(O, T= T,,+(Tw-Td$(O, 

T = T~f(Ttr-T~kd5). 

5. RESULTS OF CALCULATIONS AND THEIR 

COMPARISON WITH EXPERIMENTAL 

DATA 

The predicted concentration and temperature dis- 
tributions in the liquid oxygen evaporation zone were 
compared with the results of an experiment conducted 
on a set-up described elsewhere [9]. The experimental 

investigation was undertaken to study the change in 
concentration and temperature fields over oxygen 
evaporating in a vessel at different time instants and 
on different levels. 

The results of numerical calculations and exper- 
imental data are presented in Figs. l-5 as plots of 
oxygen concentration and mixture temperature vs the 
coordinate y and t. In Fig. 1 curves 1, 2 and 3 cor- 
respond to the oxygen concentration distribution 
above the evaporation surface for the time instants 
t, = 60, tz = 300, t3 = 6000 s. The experimental con- 
centration data in Fig. 1 are designated as ‘0’ for t,, 
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FIG. I. Distribution of oxygen concentration above the evap- 
oration surface at different time instants. 
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FIG. 2. Dependence of temperature on the height above the 
evaporation surface. 
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FIG. 3. Variation of oxygen concentration in time at different 
heights. 

n for tl, n for t,, respectively. Curves l-6 in Fig. 2 
represent theoretical relations of the mixture tem- 
perature vs height. These correspond to the times 
i, = 60, t2 = 180, t, = 330, r4 = 420, T, = 600, 
t6 = 900 s. The experimental data for the indicated 

time instants are labelled as: 0, A, *, V, A, l , 
respectively. 

Curves 14 in Fig. 3 determine the change in the 
oxygen concentration with time at the height 
y, = 0.02, yZ = 0.04, y, = 0.06 and y, = 0.1 m. The 
symbols *, v, A correspond to the measured values 
of concentrations at the levels y,, y, and y,. 

In Fig. 4, curves 1-7 and the symbols *, v, v, @,, 
0, + and + depict the predicted and experimental 
dependences of temperature on time for the levels 
y, = 0.02, y, = 0.04, y, = 0.05, y, = 0.06, ys = 0.07, 
yb=0.1andy,=0.2m. 

Figures 14 demonstrate rather a good coincidence 
of theoretical and experimental results thus con- 

FIG. 4. 

WI 

Dependence of temperature on time at different 
heights. 

firming the admissibility of the simplifying assump- 
tions made and sufficient accuracy of the proposed 
calculation method. 

Some difference in the experimental results for the 

concentration (Fig. 3) i.e. the decrease at small times 
and increase at large times, seems to be due to the 
effect of gravity. This conclusion is confirmed by the 
predicted dependence of the mixture density on the 
height y given in Fig. 5. Curves 1,2 and 3 correspond 
to the time instants t , = 60, t2 = 300 and t, = 600 s. 

It follows from the results obtained that there are 
large temperature and concentration gradients in the 
vicinity of the evaporation surface. Substantial vari- 
ations in the parameters occur in a comparatively 
narrow zone near the phase interface. This result 



3398 L. A. DEKHTYARENKO et crl 

! 

I 
0.3-, 

I 

T 
5 

1 .o 2.0 3.0 4.0 

dkg m-3] 

FIG. 5. Dependence of mixture density on the height above 
the evaporation surface. 

agrees qualitatively with the results of practically 
observed evaporations of condensed gases into the 
atmosphere. 

The solutions obtained most accurately describe the 

process near the phase change surface over limited 
time intervals being a case of practical interest. 
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